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Received 24 February 1997, in final form 16 June 1997

Abstract. By means of Ito calculus it is possible to find, in a straightforward way, the analytical
solutions to some equations related to the passive tracer transport problem in a velocity field
that obeys the multidimensional Burgers equation and solutions to a simple model of reactive
tracer motion.

1. Introduction

In a recent paper [1] Saichev and Woyczynski have obtained exact solutions in arbitrary
dimensions of equations of hydrodynamic type related to the Burgers equation (see, e.g.,
[2–6]) for an irrotational velocity field with two models of coupled passive or reactive
tracers. For the inhomogeneous Burgers equation and more general models of tracers,
closed but less explicit solutions are obtained as path integrals.

The main idea of [1] is to reduce the system specified by the forced Burgers equation,
together with the advection–diffusion–reaction equation, to a pair of coupled linear diffusion
equations with variable coefficient which can be analytically solved by means of the
Feynman–Kac formula (see, e.g., [6]).

They also show that the same methodology can be used to generate exact solutions
of a nonlinear reaction–diffusion equation coupled with a Burgers-like velocity field also
depending on the concentration.

The Feynman–Kac equation expresses the solution of a parabolic partial differential
equation (PDE) without drift in terms of a conditional average over Brownian trajectories.
A generalization of the Feynman–Kac formula when a drift is present is supplied by the
Cameron–Martin–Girsanov formula [7]. This observation allows us to recover the results
in [1] without using any auxiliary field.

2. The Girsanov formula

In this section a generalized version of the Girsanov formula is recalled and its relevance
to parabolic PDEs is explained.

Theorem 1. Let x(1), x(2) ∈ Rd be solutions on the interval 06 t 6 T of the stochastic
differential equations

dx(i)(t) = b(i)(x(i)(t), t)dt + σ(x(i)(t), t)dw(t)

x(i)(0) = x i = 1, 2 (1)
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where w is a d-dimensional Brownian motion,b(i)(x, t) (i = 1, 2) and σ(t,x) are
respectively Borel-measurable,Rd -valued functions on [0,∞[×Rd and a Borel-measurable,
[0,∞[×Rd × Rd -valued function with bounded inverse∀x, t . If b(i)(x, t) (i = 1, 2) and
σ(t,x) satisfy the assumptions of the existence and uniqueness theorem for the solutions
of (1), then the probability measureµ2 of x(2) will be absolutely continuous with respect
to µ1 of x(1) and

dµ2

dµ1
(x(1)(t)) = eAt

At =
∫ t

0
α(x(1)(s), s) · dw(s)− 1

2

∫ t

0
‖α(x(1)(s), s)‖2 ds (2)

where

α(x, t) = σ−1(x, t)[b(2)(x, t)− b(1)(x, t)}. (3)

See [7, p 279] for proof and details.

A straightforward consequence is that for any reasonably smooth functionfk(x), with
k ranging from 1 ton and for alln-tuples(t1, . . . , tn) such that 06 t1 6 · · · 6 tn 6 t we
have

Ex
{ n∏
k=1

fk(x
(2)(tk))

}
= Ex

{ n∏
k=1

fk(x
(1)(tk)) eAt

}
. (4)

This result can be exploited in order to write the solutions of parabolic PDEs as path
integrals on Wiener trajectories (see, e.g., [6]).

In the following sections the result (2) will be applied, disregarding the conditions on
the drift field, in order to derive the announced results formally. The advantage of this
approach is to supply a direct physical interpretation for the solutions in terms of stochastic
trajectories.

3. Simple applications

As a first application, let us consider thed-dimensional homogeneous Burgers equation with
rotation free initial condition:

∂tv + v · ∇v = ν1v
v(x, 0) =∇20(x). (5)

The physical meaning of (5) is that the velocity field is, on the average, constant along the
trajectories generated by the stochastic differential equation:

dx(s) = −∇2(x(s), t − s) ds +
√

2ν dw(s) x(0) = x. (6)

If we introduce

dz(s) =
√

2ν dw(s) z(0) = x z(t)
law= N (x, 2νt) (7)

we can exploit Girsanov’s theorem and write

∇2(x, t) = Ex{∇z(t)20(z(t)) e−Zt } (8)

where

Zt = 1√
2ν

∫ t

0
∇2(z(s), t − s) · dw(s)+ 1

4ν

∫ t

0
‖∇2(z(s), t − s)‖2 ds. (9)
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We can eliminate the stochastic integral in (9) by means of

ds2(z(s), t − s) = {−∂t−s2(z(s), t − s)+ ν12(z(s), t − s)} ds
+
√

2ν∇2(z(s), t − s) · dw(s). (10)

This substitution is useful since the potential satisfies

∂t2+ 1
2∇2 ·∇2 = ν12 2(x, 0) = 20(x). (11)

So we get to

∇2(x, t)exp

[
−2(x, t)

2ν

]
= Ex

{
∇z(t)20(z(t)) exp

[
−20(z(t))

2ν

]}
. (12)

Finally, we can derive the explicit expression for the velocity potential by means of a simple
integration by parts and by exploiting the homogeneity of (7):

2(x, t) = −2ν lnEx
{

exp

[
−20(z(t))

2ν

]}
(13)

which means

2(x, t) = −2ν ln

[ ∫ ∞
−∞

e−8(x,y,t)/2ν
ddy

(4πνt)d/2

]
(14)

where

8(x,y, t) = (x− y)2
2t

+20(y). (15)

If we consider a class of initial conditions such that
20(x)

‖x‖2
→ 0 for ‖x‖ ↑ ∞ (16)

then (14) is always well defined and, in the limitt ↓ 0, it is consistent with the initial
condition2(x, 0) = 20(x). Therefore, we have recovered the already known result of the
Hopf–Cole theory (see, e.g., [4, 5]) stating that the solution of the Burgers equation with
irrotational initial condition is given in any dimension at arbitrary timet by

v(x, t) = ∇2(x, t). (17)

Let us now consider the system

∂tC + v · ∇C = µ1C + VC + g C(x, 0) = C0(x) (18)

wherev is given by (5). The external driftV and the volume forceg are functions ofx
and t ; V , g and the initial dataC0 are smooth functions growing, as‖x‖ goes to infinity,
more slowly than‖x‖2. In the general case, this equation can be formally integrated as a
path integral in the form (see, e.g., [6]):

C(x, t) = Ex
{
C0(z(t)) exp

[
−Zt +

∫ t

0
V (z(s), t − s) ds

]}
+Ex

{∫ t

0
g(z(s), t − s) exp

[
− Zs +

∫ s

0
V (z(u), t − u) du

]
ds

}
(19)

wherez(t) andZt are given by (7) and (9), respectively.
If µ = ν andV = g = 0 the situation is more simple and the solution can be easily

expressed as an ordinary integral:

C(x, t) = Ex{C0(z(t)) e−Zt }. (20)
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It is now sufficient to proceed, as before, to the elimination of the stochastic integral in (9)
by means of (10) and to use (11) to arrive at

C(x, t) = exp

[
2(x, t)

2ν

] ∫ ∞
−∞

C0(y) exp

[
−8(x,y, t)

2ν

]
ddy

(4πνt)d/2
(21)

or, in more explicit terms,

C(x, t) =
∫∞
−∞ C0(y) e−8(x,y,t)/2ν ddy∫∞
−∞ e−8(x,y,t)/2ν ddy

(22)

which is the first result of Saichev and Woyczynski.
If the diffusion coefficient in (18) isµ 6= ν, the velocity and the concentration fields are,

on average, constant along different stochastic trajectories, so we can no longer use (11) to
reduce the path integral to a finite-dimensional one. However, we can formally write

C(x, t) = e2(x,t)/2µEx
{
C0(z

′(t)) exp

[
− 20(z

′(t))
2µ

− (ν − µ)
2µ

∫ t

0
12(z′(s), t − s) ds

]}
z′(t) law= N (x, 2µt) (23)

where2(x, t) is given by (14). The expression (23) holds true as far it is well defined
(non-divergent).

4. A reaction–diffusion model

Another possible simple application of the Girsanov theorem is the solution of the following
reaction–diffusion model considered in [1]:

∂tv + v · ∇v = ν1v + 2νk∇C v(x, 0) =∇20(x) (24)

∂tC + v · ∇C = ν1C + kC2 C(x, 0) = C0(x) (25)

wherek is a constant.
Let us consider the stochastic differential

ds

{
exp

[
k

∫ s

0
C(x(u), t − u) du

]
C(x(s), t − s)

}
= exp

[
k

∫ s

0
C(x(u), t − u) du

]
{kC2(x(s), t − s) ds + dsC(x(s), t − s)} (26)

where

dx(s) = −∇2(x(s), t − s) ds +
√

2ν dw(s). (27)

If we take the expectation value of (26) and equation (24) is satisfied, then it is easy to
see that

C(x, t) = Ex
{
C0(z(t)) exp

[
− Zt + k

∫ t

0
C(z(s), t − s) ds

]}
(28)

wherez(t) andZt are given by (7) and (9), respectively.
Again we can use (10) and obtain an expression of the form (21) where, now,2(x, t)

is given by solving (24). This can be done by observing that, in terms of the potential, it
has, according to the notation in [1], the form

∂t2+ 1
2∇2 · ∇2 = ν12+ 2νk e2/2νa0. (29)
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Here we have

a0(x, t) =
∫ ∞
−∞

C0(y) e−8(x,y,t)/2ν
ddy

(4πνt)d/2
. (30)

and8(x,y, t) is defined by (15).
The Ito calculus suggests that equation (29) can be rewritten by means of the stochastic

process (7) as

Ex
{

ds exp

[
−2(z(s), t − s)

2ν

]}
= kEx{a0(z(s), t − s)} (31)

which implies

2(x, t) = −2ν lnEx
{

e−2(z(t),0)/2ν − kta0(z(t), 0)+
∫ t

0
s dsa0(z(s), t − s) ds

}
. (32)

Sincea0(x, t) is solution of the heat equation we have

Ex
{∫ t

0
s dsa0(z(s), t − s) ds

}
= 0. (33)

Therefore, we can conclude that the velocity potential is now

2(x, t) = −2ν ln[b0(x, t)− kta0(x, t)] (34)

with

b0(x, t) =
∫ ∞
−∞

e−8(x,y,t)/2ν
ddy

(4πνt)d/2
(35)

while the reactive tracer is

C(x, t) = a0(x, t)

b0(x, t)− kta0(x, t)
(36)

which is the second result of Saichev and Woyczynski.

5. Conclusion

By means of Ito calculus is it possible to obtain the result reported by Saichev and
Woyczynski in ([1]) in a natural and straightforward way.

This work benefited from sharp observations made by Erik Aurell. I am deeply grateful to
him and to all the other friends in Sweden for their warm hospitality and good time spent
together. This work was supported by a ESF/TAO grant for the year 1996.

After the submission of the paper I received a copy of the work by Garbaczewskiet al
[8] where the Burgers equation is investigated in the more general Schrödinger interpolation
framework.
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